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Abstract. In this paper I mnsider vortical struclures in superRuid helium in the form of knots 
and links Then I give some basic notions and faus from knot theory, necessary to undersfand 
lhe rest of the paper. I consider framed knotted vonices and identify these iiames with some 
excitations. The statistics of these excitations is actually femionic. 

1. Introduction 

As is well known, quantum vortices in superfluid helium are treated either as open lines 
with their ends terminating on free surfaces or walls of the container, or as closed curves. It 
is a paradigm to consider vortices of this second kind as objects topologically equivalent to 
circles. In my opinion, this common belief should be revised. Namely, I think that closed 
vortices in the form of non-trivial knots should be investigated. Additionally, systems of 
knots in the form of non-trivial links should be taken into consideration. 

This is the first of a series of papers, where I examine the consequences of non-trivial 
topology of vortices for the physics of superfluid helium. These are manifold. In this paper I 
discuss fermionic excitations of knotted vortices. In the next paper I will argue that fermionic 
excitations are also possible in bulk superfluid filled with knotted vortex lines (Owczarek 

1993b). I will not touch problems COM& with superfluid turbulence. However, the very 
existence of such structures as knotted and linked vortex lines in the turbulent phase seems 
to be rather obvious (Schwartz 1985) and should be a subject of investigation in the near 
future. 

The plan of this paper is as follows. Firstly, I will introduce some basic notions and 
results from the knot theory to convince readers, to establish notation and to present some 
useful facts. Secondly, I will show how the excitations of the vortices can originate. Finally, 
I will briefly discuss experimental results of the experiment (Ohbayashi et a1 1990) from 
the point of view of the new approach proposed in this paper. 

- 1993a) and then I will investigate their role in the theory of h phase transition (Owczarek 

2. Basic notions from the knot theory 

Knot theory is the theory of embeddings of a circle into three-dimensional space. Such 
embeddings are called knots. Originally it was only a three-dimensional sphere, i.e. 
compactified three-dimensional Euclidean space, where these knots were placed. The 
problem of the classification of knots has not been fully resolved until now, but the idea is 
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to build up some mathematical objects characterizing knots, invariant under transformations 
changing only their shape and not their topology. Many such invariants are known, but none 
of them characterizes knots uniquely. Recently significant progress has been made in the 
theory. Firstly, Jones (1985) constructed such invariants, now known as Jones polynomials. 
These are much more effective in differentiating knots than invariants known previously, and 
can be applied to links of knots, i.e. linked structures obtained by embedding at least two 
circles in a three-dimensional space. Moreover, their construction has some connections 
with two-dimensional exactly solved models of statistical physics. The second big step 
forward was made by Witten (1989). He described Jones polynomials in an entirely three- 
dimensional way in the framework of a topological quantum gauge field theory. In my 
considerations of knotted vortices I apply the Witten approach widely. Therefore I will 
briefly present the main points of it now. 

Knot invariants in this approach are constructed in the framework of the Chem-Simons 
gauge field theory. Such a theory could be formulated over any three-dimensional manifold 
M using any gauge field A for arbitrary compact (simple or Abelian) gauge group G. 

The Chem-Simons action for the gauge field 

S(A) = - Tr(A A d A  + { A A A  A A )  
,"z J, 

where Tr is the appropriately renormed Killing metric for the group G (for an Abelian group 
it is any appropriately renormed metric) and k is an arbitrary integer number. This action 
is invariant under gauge transformations, or rather exp[iS(A)] is. As one can see, it is built 
without the use of any metric on the manifold M. As a result, the quantities: 

where Ri are some representations of G, assigned to knots C, in M, P stands for an 
orientation of C,, are also topological invariants. 

When there are no knots in the manifold M, this is atopological invariant of the manifold 
itself. On the other hand, when M = S3 these invariants are directly connected with Jones 
polynomials as Witten has shown. The case of one knot is interesting because in this case 
one should regularize the invariant in some way. The regularization scheme proposed by 
Witten resembles a physical splitting point procedure. He introduces frames of knots, i.e. 
fields of normal vectors. One can then consider an image C' of the original knot C under 
infinitesimal translation along normal vector field. The invariant calculated for the pair C, 
C' is the regularized invariant for C. Its value depends on the frame and changes under 
changing of a frame by a multiple of an integer number i.e. by a weIl defined amount. The 
role of these frames is crucial in my further consideration of knotted vortices in this paper. 

This general scheme has its rather simple counterpart in the case of the gauge gmup 
G being U(1). This gauge group is very important in the theory of superfluidity (Kleinert 
1982, Peradzyhski 1990, Owczarek 1991). Representations of this gauge group are very 
simple, one-dimensional, and are characterized by integers ni: 

(3) 
The Chem-Simons action in this case is 

R", : U(1) 3 z H zni E U(1) c C'. 

S(A)= - A h d A  
:z s, 

and the invariants for M = S' are 

(4) 
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where 

(61 

with n, and ttb integers characterizing representation to C, and cb respectively, is the Gauss 
linking number, a well known topological invariant. 

@'(c&, cb) = 1, dX' Lb dyj,'jk- ( x  - Y)k 
IX - ~ 1 3  

3. Application to superfluid helium 

In the hydrodynamics of an ideal fluid there is an invariant of motion called helicity 

H = l3 d3x 'iirotii (7) 

where U stands for velocity field of the fluid. 
For vorticity concentrated on very thin vortex lines this invariant is proportional to the 

Gauss linking number of these lines (Moffatt 1969). Therefore it is a topological invariant 
and has a good interpretation in the framework of the knot theory, as can be seen from the 
formula (6) above. 

Peradzyfiski (1990) considered the same invariant in the case of superfluid helium in the 
framework of an explicitly U(l)-invatiant description of superfluid helium. He constructed 
an action 1-form 

A = iisa - (,U + $$)dI (8) 
where Us is the supemuid velocity field, and /I is the chemical potential. This action has 
its relativistic counterpart 

A = U,,, dx' (9) 
where u.,, is the superfluid four-velocity field. 

The quantity 

H =  AAdA (10) 

is an invariant of motion, a superfluid counterpart of helicity. Then one has explicitly the 
U(l)-invariant equation of motion 

dA = J (11) 
(where J is the spacelike vomcity 2-form) being fulfilled. 

Of course, the helicity invariant is proportional to the Gauss linking number as in the 
case of an ideal fluid. 

On the other hand, the phenomenon of reconnection of vortex lines could change locally 
the helicity and the liking number in ordinary fluids (Moffatt 1969) and in superfluids 
(Schwartz 1985) as well. Such effects are caused by dissipative processes in fluids and 
could be responsible for such phenomena as superfluid turbulence (Schwartz 1985) and 
h-phase transition (Owczarek 1993b). 

How to interpret frames of knots in the theory of superfluidity is an interesting problem. 
As we have seen, frames of knots should be understood as normal vector fields for vortices. 
There are many examples of applications of normal vector fields in the theory of quantum 
vortices (see for example Owczarek and Slupski 1992). These fields can be connected 
with excitations of vortices. In my opinion. frames of vortices are actually very special 
excitations, which are quantized in a way, because they could be numbered by integers as 
one can see from the formula describing a change of the invariant under a change of frame. 

There is possibly a connection between a scheme of geometric quantization of vortices 
and these excitations. There are similar suggestions in the article by Penna and Spera (1 989), 
but this has some weak points (Slupski 1991). Work on these problems is in progress. 

! 

* 
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4. Frames and fermionic excitations of vortices 

There are two possible physical interpretations of knotted curves in three-dimensional space. 
They depend on the signature of the metric censor that is finally introduced in the target 
space for embeddings. 

If the signature of the metric is Euclidean, we can interpret the three-dimensional space 
as a t = constant hypersurface in four-dimensional space-time. When the topology of the 
system of knotted lines is conserved in time, we can calculate our invariants at an instant 
of time and this is the case considered. 

On the other hand, if the signature of the three-dimensional space is Lorenhian, the 
interpretation is different. Our three-dimensional space is similar to the normal four- 
dimensional spac+time with the only difference being that the number of space-like 
dimensions is two. 

Lines in this space-time can be interpreted as trajectories of particles (especially when 
there are representations of the group G assigned to them and such representations could 
be connected with charges of the particles). Such situations are known in physics, for 
example in high-temperature superconductivity where the motion of an electron is limited 
to a two-dimensional plane. There is also another possibility. We can consider projections 
of trajectories on a two-dimensional plane. This procedure leads to the reduction of the 
dimensionality of space-time from 3+1 to 2+1. Such an interpretation seems to be natural 
in the theory of superfluidity (Rasetti and Regge 1975). These authors showed that the 
dynamics of vortices in supemuid helium is well described by the dynamics of their 
projections on a two-dimensional plane. In the vicinity of the h. point we can ignore 
the influence of supemuid helium constituents other than quantum vortices. As a result, 
its effective dynamics is (2 + 1)-dimensional and is apparently connected with knot theory, 
where two-dimensional projections of knots satisfactorily characterize them (figure 1). I 
should only mention that Rasetti and Regge investigated non-gauged vortices and I have no 
evidence that their conclusions are also true in the case of gauged vortices. 

Both of these interpretations could be useful in the theory of vortices in a superfluid. 
We could use the two approaches because of the following features of the helicity invariant 
Seen from Peradzyliski’s (1990) paper: A is the 1-form in the four-dimensional space-time 
(relativistic or not). Because the equation of motion is fulfilled 

dA = J (12) 

d(A AdA) =dA AdA = J A J = 0 (13) 

where J is the spacelike 2-form. we have 

as a 4-form built with the use of threx base 1-foms dr’, i = 1, 2, 3. 
Then 

A A d A -  A A d A =  d(AAdA)=O (14) 

for an arbitrary pair of hypersurfaces E,, and E,, which are boundaries of an area V of 
space-time. These hypersurfaces could be space-like or time-like; it does not matter. This 
insensitivity of the result to the character of the hypersurface is the cause of the appearance 
of various kinds of approach to knotted vortices in a supemuid. 

In my further considerations in this paper I will apply the Lorentzian point of view. In 
this case knotted lines are formally identified with trajectories of particles. Such particles 
can change their statistics from bosonic to fermionic or vice versa. I use Polyakov’s (1989) 
results to show this. 

s,, s,, s, 
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Figure 1. Dimensiond reduction for hors as a projection operation. 

When one considers a statistical sum over lrajectories of particles without any intemal 
structure it is usually written as 

z = Cexp[-mL(P)I (15) 
P 

where is over all possible lrajectories P (in ow case they are all closed) and m is a 
characteristic mass scale. 

Polyakov proposes to treat the knots as trajectories of particles dressed by the gauge 
field A, which in his approach is already a U(]) gauge field. Then the statistical sum is 
written in the form 

Z = xexp(-mL)(  e x p ( i i  A ) )  
P 

where 

( e x p ( i i A ) ) =  /DAexp[iS(A)]exp ( i iA) 
and S ( A )  is the Chem-Simons action. Therefore (exp(i$p A)) is the very same invariant as 
considered by Winen, except for the unimportant multiplication by i. Polyakov regularizes 
it in a slightly different way from Witten. The result is 

where s is a parameter along the curve P and C(s) is the torsion of P for the value of the 
parameter equal to s. 
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As Polyakov (1989) has shown, the propagator of the particle in the momentum 

( 19) 
representation is equal to 

where 
This quantity is the propagator of a particle of spin 1 i.e. a fermion, with mass equal 

to m. 
We know that m is a characteristic mass scale, which is inversely proportional to a 

characteristic length scale of the theory. Such a characteristic length scale for superfluid 
helium can be identified with the correlation length. Usually such a correlation length in 
superfluid helium is of the order of 1 8, and this corresponds to rather heavy particles, which 
are difficult to observe. The only way to observe such excitations is to perform experiments 
for temperatures very close to the A point. 

It seems that there already exists an experiment (Ohbayashi et a1 1990). the results of 
which seem to be unclear to the authors and could possibly be explained in the framework of 
my approach. In the experiment Raman scattering of light by a superffuid was investigated. 
A difference occurred between the experimental results and the predictions of the theory 
of Raman scattering. These divergences exist near the h point. In my opinion, we can 
understand this difference if we accept the point of view that light could be scattered by 
frames of vortices, appearing near the A-point temperature. 

G@) = I / ( m  - iFfi) 
= (ox. uy, U,) are Pauli matrices. 

5. Conclusions 

As we have seen, frames of knotted vortices can be interpreted as their specific excitations. 
Their interesting feature is that being dressed by the U(1) gauge field A, they behave, from 
a statistical point of view, as fermions. 

Moreover, I believe that such fennionic excitations can cause some interesting effects. 
In my future paper (Owczarek 1993b) I will discuss the role of fermionic excitations in a 
bulk superfluid on the A phase transition. 
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